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Hydrophobicity and unique folding of selected polymers
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Abstract. In a suitable environments, proteins, nucleic acids and certain synthetic polymers fold into
unique conformations. This work shows that it is possible to construct lattice models of foldable het-
eropolymers by expressing the energy only in terms of individual properties of monomers, which model
exposure to the solvent and the steric factor.
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It is generally believed that the hydrophobic interaction
plays a major role in protein folding [1–9]. Under physio-
logical conditions, non polar amino acids are buried inside
the core of the native state of a protein to avoid con-
tact with water molecules. A long standing question is to
what extent other non-covalent forces, such as hydrogen
bonding, electrostatic and van der Waals interactions con-
tribute to stabilize the folded state [1–3].

Unraveling the different roles played by these inter-
actions will have a considerable impact in different ar-
eas of research in biophysics, such as the prediction of
protein structures [1,2,4–6] the design of synthetic drugs
[5,10–12], and the production of self-assembling non-
biological polymers [13] and other polymeric materials
[14].

With the advent of genome projects [15] a wide gap is
opening between the number of known protein sequences
and their correspondent structures [16]. The bottleneck in
protein structure prediction is at present largely due to
the incorrect treatment of the interactions [17–19]. Vari-
ous techniques to single out the native state of a protein
from a library of alternative structures are typically car-
ried out by assigning an energy-like function that incor-
porates the compatibility of each amino acid to its local
environment [20]. Compatibility is described in terms of
charge, polarity and secondary structure content, within a
given conformation. Details in the local environment play
a crucial role also in RNA folding. A key ingredient in this
case is given by metal ion coordination numbers [21]. Like-
wise and rather surprisingly, a non-biological polymer (an
aromatic hydrocarbon) has been recently designed which
is able to fold into a unique helical structure having a large
cavity, supposedly under the effect of the hydrophobic in-
teraction [13].

a e-mail: femichel@wicc.weizmann.ac.il

This study contributes to the development of a rational
treatment of interactions in heteropolymers at the single
monomer level. We show that it is possible to construct
minimalistic lattice models of foldable heteropolymers, by
introducing an energy function that depends only on in-
dividual residues’ environments. A model will be called
“foldable” if there are sequences, either randomly chosen
or selected, with a unique, thermodynamically stable and
kinetically reachable ground state [2,3,5–8,19,22–24]. We
adopt a simple approximation for the energy which ac-
counts both for the propensity to be exposed to the sol-
vent and for the excluded volume effects due to the differ-
ent sizes of the monomers. Although naturally existing or
synthesized polymers, such as proteins, nucleic acids and
tailored hydrocarbons, are characterized by much more
complex interactions, the main focus here is on the fact
that the unifying feature is the tendency to avoid contact
with the solvent by some species of monomers. Previous
theoretical studies concentrated mainly on the treatment
of pairwise contact energies [2,17,19,25–29]. This is in
contrast with the present study, in which the hydrophobic
effect is investigated at the individual particle level.

Lattice models, although often criticized [30], have
been recognized to capture some of the most relevant ther-
modynamic features of the folding process [31], such as
the existence of a unique ground state, amenable to ex-
act computations, and the cooperativity of the transition.
Even key dynamical processes, such as the nucleation-
condensation mechanism [32], have been validated with
the help of lattice models [33].

On a lattice, a polymer is represented as a connected
chain of N monomers. Hydrophobicity and steric factors
can be modeled as the tendency of a monomer to have a
specific number of non-bonded nearest-neighbors. We de-
fine the hydrophobic model HM1 by expressing the energy
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E1 as,

E1 =
N∑
i=1

|ni − n(ai)| , (1)

where ni is the number of non-bonded nearest-neighbors
of monomer of species ai in position i along the chain,
and n(ai) is the ideal value of ni. This expression was first
proposed by Hao and Scheraga, who considered it together
with a pairwise energy term [34]. They presented a method
to optimize energy parameters to obtain lattice models of
foldable polymers. Other previous work has been devoted
to the hydrophobic interaction, although without specifi-
cally disentangling it from other interactions. Mirny and
Domany [29] introduced explicitly an hydrophobic term in
the energy function and they performed various tests of
fold recognition and dynamics. In a recent work Li, Tang
and Wingreen [35] discussed the “designability principle”
[8] in terms of a “binary” model with two species of amino
acids, where the energy is expressed in terms of the expo-
sure to the solvent only. The model proposed here is more
general and no major modification is required to extend it
to the treatment of realistic models of foldable heteropoly-
mers, as for example, in a “contact map” representation
of protein structure [29,36].

As a preliminary step, we first explore 2D lattice mod-
els, restricting our attention to the existence of a unique
ground state structure, disregarding the thermodynamic
and the kinetic issues and we compare our results with
those obtained using the standard HP model [2]. The suc-
cess of the HP model is due to the fact that in 2D a 2%
fraction of all the possible sequences has a unique ground
state [2,7,8,12], although probably the folding transition
is of the wrong order [6]. In the HP model the energy is
written in the pairwise contact approximation

Epair =
∑
j>i

U(ai, aj)∆ij , (2)

where ai can be either H (hydrophobic) or P (polar) and
∆ij is a contact matrix, which is defined to be 1 if two
monomers are non-bonded nearest-neighbor and 0 oth-
erwise. Typical values for the interaction parameters are
U(H,H) = −1 and U(H,P ) = U(P, P ) = 0 [2]. A chain of
N = 16 monomers is amenable to complete enumeration
of all 802 075 possible symmetry-unrelated conformations,
either compact or not [2,11,12]. For the above mentioned
choice of contact energy parameters, there are 1539 (2%)
sequences among the 216 = 65 536 possible ones which
have a unique ground state [11,12]. We compare this re-
sult with those obtained by using equation (1), setting
n(1) = 1.5 (hydrophobic-like) and n(2) = 0.4 (polar-like).
A larger number, 10 178 (16%), of sequences was found to
have a unique ground state.

We have also explored the case of three species of
monomers, a number which, within a contact approxi-
mation of the interactions (as in Eq. (2)), is believed to
epitomize the essential features of the interplay between
folding and glass transitions in random heteropolymers
[37]. We chose at random 20 177 sequences among the

2 018 016 possible ones with fixed composition N(1) = 6,
N(2) = N(3) = 5, where N(a) is the number of monomers
of species a. Choosing energy parameters n(1) = 0.4,
n(2) = 1.1 and n(3) = 1.8, 9439 (47%) sequences were
found with a unique ground state.

In the spirit of Mirny and Domany [29], a more accu-
rate form for the hydrophobic energy is given by

E2 =
N∑
i=1

β(ai) [ni − n(ai)]
2
. (3)

This expression will be referred to as hydrophobic model
HM2. The parameters β(ai) capture the various degrees
with which the different species of monomers tend to at-
tain the preferred number n(ai) of contacts. In the case of
2 species of monomers, we repeated the same calculation
as for the HM1 model. Letting here β(1) = β(2) = 1,
we found 9821 (14%) sequences with a unique ground
state. We observe that, at least from the above calcula-
tions in 2D, the approximation of the hydrophobic inter-
action proposed in this work is capable of yielding foldable
sequences.

We now turn to the calculations in 3D which represent
the essential part of this work, and further illustrate the
extent to which the present model embodies foldability. It
is known that the HP model is pathological in 3D, since
it is rather uncommon to have a sequence with a unique
ground state with a large gap above it [6,38], although
the situation can be different with a choice of parame-
ters favoring more collapsed structures [8,19]. We discuss
here the general case of 20 species of monomers in the
HM2 model. We compare these results with those obtained
by using a common parametrization of the pairwise con-
tact interaction matrix U(ai, aj) in equation (2), due to
Miyazawa and Jernigan (MJ) [25], although other choices
would be possible [25–29]. For the HM2 model, we derived
the 40 parameters n(a) and β(a) from a statistical anal-
ysis of the non redundant set of 246 protein structures
reported by Hinds and Levitt [27]. The procedure, similar
to that of Mirny and Domany [29], is straightforward. For
each amino acid species a, we computed the average, n(a),
and the standard deviation, β(a), of the number of con-
tacts it forms in the set of experimentally known crystal
structures (see Tab. 1). Two amino acids are said to be
in contact if their Cα atoms are closer than 8.5 Å in the
native structure [36].

On the cubic lattice, the 103 346 symmetry-unrelated
maximally compact conformations of a polymer of length
N = 27 can be enumerated in a manageable computer
time [8,40]. If it is guaranteed that the ground state is
maximally compact, exact enumeration can be used to
demonstrate its uniqueness. We adapted the energy pa-
rameters to the cubic lattice by matching the average
number of contacts that a monomer forms on the 3×3×3
cube with the average of the ideal number of contacts,
(1/20)

∑
a=1,20 n(a). This result is obtained by rescaling

the energy parameters in Table 1 by a factor 3.315.
To characterize foldability, we first investigate the

thermodynamic stability of the ground states of random
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Table 1. Mean n(a) and standard deviation β(a) of the number of contacts of amino acids, obtained from a statistical analysis
of a non redundant set of 246 protein structures.

ALA GLU GLN ASP ASN LEU GLY LYS SER VAL ARG THR PRO ILE MET PHE TYR CYS TRP HIS

7.56 5.62 6.23 5.51 6.02 7.63 5.55 5.86 6.31 8.29 6.58 6.73 5.73 8.07 7.72 7.58 7.45 8.81 7.67 6.59

2.98 2.17 2.36 2.41 2.58 2.25 3.51 2.08 3.07 2.53 2.33 2.77 2.85 2.35 2.37 2.31 2.51 2.42 1.36 2.43

Fig. 1. Normalized histograms of the Z scores for the HM2

(full lines) and MJ (dotted lines) models. Circles refer to ran-
dom sequences and squares to designed ones.

sequences. A typical measure of thermodynamic stabil-
ity is given by the Z score [19,28], which is defined by
Z = (En − 〈E〉)/σ, where En is the energy of the ground
state, 〈E〉 is the average energy, and σ the standard devi-
ation in the distribution of the energy around the average.
We measure the distribution of the Z scores for a set of
1000 random HM2 sequences. We found that only 2% of
them had a unique lowest energy state (the “ground state”
among maximally compact conformations). Moreover, on
average the degeneracy was 22.

For comparison, 99% of the 1000 random MJ sequences
that we considered had a non degenerate lowest energy
state, and the remaining ones had a very small degeneracy.
The result of the comparison of the Z scores is shown in
Figure 1.

The analysis of kinetic accessibility of the identified
lowest energy states, together with the low values of the Z
score and the large degeneracy associated to them mark
a shortcoming of enumerating only maximally compact
conformations. By using other simulation techniques, such
as the standard lattice Monte-Carlo (SMC) [22,39], and
the prune-enriched Rosenbluth method (PERM) [42], we
easily found non-compact lower energy states for most of
the considered HM2 sequences.

The former analysis was carried out on random se-
quences, whereas foldability is believed to be a property
of selected sequences [4–6,9–12,23,24]. A way to demon-
strate that the HM2 model is foldable is to show that it is
possible to select sequences whose ground states are both

unique and maximally compact. The usual design proce-
dure [10], introduced to study pairwise interactions, pre-
scribes to choose a target conformation and then to search
in sequence space for the sequence with minimal energy
onto such conformations. This procedure delivers a bet-
ter Z score for the 1000 designed MJ sequences that we
considered, as can be seen from Figure 1. However, in the
case of the HM2 model, we found that such technique is
not sufficiently effective in designing out alternative con-
formations. A sequence design procedure similar to those
proposed in references [11,12] proved to be more effec-
tive. Sequences selected in this way were found to have a
unique ground state by exact enumeration among maxi-
mally compact conformations. More crucially, in no cases
we have been able to reach lower energy states using dy-
namical simulation techniques such as the SMC and the
PERM algorithms. The histogram of the Z score of the
100 HM2 sequences selected in this way is shown in Fig-
ure 1.

We summarize our results for the HM2 model. We first
showed that 2% of randomly selected sequences have a
unique lowest energy state when all maximally compact
conformations are enumerated. Second, we showed that se-
quence design is effective in identifying foldable sequences.
The sequence selection procedure is more effective in im-
proving the Z score of the MJ model than that of the HM2

model, as shown in Figure 1.
How should these results be interpreted? In a re-

cent paper, Li et al. [41] showed that the MJ interac-
tion matrix can be accurately expressed by using only
20 hydrophobicity-related parameters each one associated
with an amino acid species. This paper is consistent with
Li et al. results about the importance of the hydrophobic
effect, but it proposes a different way to encode it. The
considerably smaller fraction of sequences with a unique
ground state found for the HM2 model is probably an ar-
tifact of the lattice model used. We found that in all the
cases of degeneracy considered, a sequence has the same
energy on two different structures if the 20 parameters
ni (i = 1, . . . , 20) are identical for the two structures.
This situation is unlikely to extend to the off-lattice case.
Furthermore, results by Mirny and Domany [29] indicates
that an energy term like equation (3) gives a good cor-
relation between the energy gap and the conformational
distance from the ground state.

Different ways to encode hydrophobicity can help in-
creasing specificity of the model. Work in this direction
is timely, since it has been proved that pairwise contact
Hamiltonians alone (such as the MJ model) are unsuitable
for folding real proteins [43]. It is therefore of critical im-
portance to improve the energy function used for protein



326 The European Physical Journal B

folding. In this spirit we have analyzed the behavior of
an energy term which expresses the hydrophobic and the
steric interactions at the level of individual monomers. We
have shown that this term alone is capable to give rise to
foldable models. The message we get from this conclusion
is that it is very promising to undertake a study of realis-
tic models of off-lattice proteins adopting a combination
of pairwise and hydrophobic terms.

It is a pleasure to thank E. Domany and P. Grassberger for
discussions.

Note added

After submission of the manuscript, we become aware of
a related independent study by Micheletti et al. [44].
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